A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules.

نویسندگان

  • Amy Hin Yan Tong
  • Becky Drees
  • Giuliano Nardelli
  • Gary D Bader
  • Barbara Brannetti
  • Luisa Castagnoli
  • Marie Evangelista
  • Silvia Ferracuti
  • Bryce Nelson
  • Serena Paoluzi
  • Michele Quondam
  • Adriana Zucconi
  • Christopher W V Hogue
  • Stanley Fields
  • Charles Boone
  • Gianni Cesareni
چکیده

Peptide recognition modules mediate many protein-protein interactions critical for the assembly of macromolecular complexes. Complete genome sequences have revealed thousands of these domains, requiring improved methods for identifying their physiologically relevant binding partners. We have developed a strategy combining computational prediction of interactions from phage-display ligand consensus sequences with large-scale two-hybrid physical interaction tests. Application to yeast SH3 domains generated a phage-display network containing 394 interactions among 206 proteins and a two-hybrid network containing 233 interactions among 145 proteins. Graph theoretic analysis identified 59 highly likely interactions common to both networks. Las17 (Bee1), a member of the Wiskott-Aldrich Syndrome protein (WASP) family of actin-assembly proteins, showed multiple SH3 interactions, many of which were confirmed in vivo by coimmunoprecipitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Comparison of Hubs in Effective Normal and Tumor Protein Interaction Networks

ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...

متن کامل

Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition.

Reengineering protein-protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of "second-site suppressors," where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been ...

متن کامل

Construction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans

We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 295 5553  شماره 

صفحات  -

تاریخ انتشار 2002